Solar Canopy, LLC Composites Canopy Concept

SOLAR CANOPY WING

Donald S. Richardson, AIA Nicholas S. Richardson, Designer

OUR STORY

This is where our Trek started.

In support of Trinity Academy for the Performing Arts, a Charter School which we helped found, The team developed a canopy to provide carbon neutral power for the School. The Project was Awarded a \$250,000 ARRA Federal Matching Grant, 2009, but were unable to find a matching partner. This first-generation design was a traditional approach, using steel and concrete.

We changed our approach and goals. Three years later, we were awarded a \$120,000 Grant from The Rhode Island Commerce Corporation. Those funds supported new engineering, materials, fabrication, as well as installation of the 8-car Canopy Prototype, installed at the Quonset Development Corp HQ. This Is the Composites Solution, near-zero steel and minimal concrete, incredibly robust and durable. Performance Details as listed above.

Deep Blue-Green Composites Solution for Distributed Generation

Introduction

- The Solar Canopy is a lightweight and robust composites/carbon fiber assembly which provides 50+ year platform for PV power generation and Water Harvesting.
- The Canopy supports any PV panel system, providing Zero-Carbon Power in service of vehicle charging, direct facility power + storage, LED Lighting, Wi-Fi, comms, etc.

Attributes

- Highest Aesthetic appeal of any system
- Longest Lifespan compared to typical steel/concrete-heavy systems
- Lowest Maintenance and Life Cycle cost
- Impervious to Acid and Alkali Soils
- Minimal Concrete (one cubic yard per column)
- Minimal steel (deck only)
- Rapid installation time
- Minimal Site Disturbance, driven or drilled Piles
- No Self-Shading, all orientations are within 1.5% equivalent power output
- Robust Structure, designed for 120mph Wind impacting 4' Snow
- Lightweight for Air/Road Transport, for ease and lower fuel use
- Lowest Energy Tail in Production/Delivery/Installation
- Stormwater Captures up to 45% of incident rainwater in typical parking lot
- Reduces runoff and buffer zone requirements

Patents

- Utility Patent US 9,153,718 B2
- Design Patent US D647,216 S

First Order Applications

- Parking Lots and Disturbed Areas
- Marinas and Green Ports, Coastal zones

Scale and Output

- Suggested Minimum 8-car system, no upper limit
- 2-3 kW/parking space for facility power and EV charging

Marine/Aviation influence

- Hollow composite columns paired with Composite/Carbon Fiber wings
- Sloping wings channel water to a central spine for collection
- Design inspired by the configuration and repose of a soaring gull

Prototype Design/Fabrication Masters

Structural Engineering: Odeh EngineeringComposites Engineering: Ariston Engineering

• Composite Wing: C3 Clear Carbon & Components

Geotechnical Engineering: GZA Engineering

Solar Engineering: ENTECH Engineering

Architectural Design: Donald S. Richardson AIA

(PROTOTYPE)



